Output format: HTML.
Data Source : NYPD vehicle collision data.
Data Transformation: Year 2014: Summary of persons injured by borough.
Chart: Column chart comparing injuries by borough.
require(knitr)
nypdvcrashSummary <-read.csv("c:/Aarti/Columbia Data Sciences/EDAV/RProject/data/NYPDSummary_Byborough.csv",header=T,sep=",")
require("ggplot2")
#BAR PLOTS
library(MASS)
library(plyr)
(bp1 <- ggplot(data=nypdvcrashSummary,
aes(x=BOROUGH,y=Frequency,
fill=factor(Type)))
+ geom_bar(stat="identity", position=position_dodge())
+ ggtitle("summary - Persons Injured By Boroughs")
+ geom_text(aes(label=Frequency), vjust=-1, size=3)
+ theme(plot.title=element_text(size=rel(1), face="bold"))
+ theme(axis.title=element_text(size=15)))
Data Source : NYPD vehicle collision data.
Data Transformation: Year 2014: Summary of persons injured by borough and vehicle type in accident.
Chart: Column chart comparing injuries by borough by vehicle types.
nypdvcrashSummary2 <-read.csv("c:/Aarti/Columbia Data Sciences/EDAV/RProject/data/NYPDSummary_ByVehicleType.csv",header=T,sep=",")
require("ggplot2")
#BAR PLOTS
library(MASS)
library(plyr)
(bp1 <- ggplot(data=nypdvcrashSummary2,
aes(x=BOROUGH,y=Frequency,fill=factor(Type))) +
geom_bar(stat="identity", position=position_dodge()) +
ggtitle("Person injuries in 2014 by Vehicle Type ")
+ geom_text(aes(label=Frequency), vjust=0, size=3)
+ theme(plot.title=element_text(size=rel(1), face="bold"))
+ theme(axis.title=element_text(size=15)))